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Abstract: A photochemical reaction in
which a conical intersection is involved
is shown to lead to several different
products. In particular, thermally al-
lowed products are produced in many
cases in addition to photochemically
allowed ones. This is a consequence of
the electronic wave-function phase-
change rule [H. C. Longuet-Higgins,
Proc. R. Soc. London Ser. A. 1975, 344,
147], which is a necessary condition for
the existence of conical intersections.
The rule is used to define the two
coordinates along which the conical
intersection is formed, and hence its
approximate geometry. These two coor-
dinates are defined by the use of the

structures of three chemical species on
the ground-state surface, termed an-
chors. Two of the anchors can be chosen
as the reactant and the desired product;
the third is another possible product.
The phase-change rule requires that
either one or all the transition states
between the three anchors must be
phase-inverting, for instance antiaro-
matic. When only one of the transition
states is phase-inverting, a ªthermally
allowedº product is always involved.

The well-known importance of antiaro-
matic transition states in photochemical
pericyclic reactions is explained by their
essential role in forming conical inter-
sections. The model provides a ration-
alization for the properties of many of
the recently calculated conical intersec-
tions. The phase-change rule provides a
simple, chemically oriented method for
both the prediction of the course and
stereoselectivity of photochemical reac-
tions. It can also be used to reject
structures proposed for conical intersec-
tions by showing that the conditions
necessary for its presence are not fulfil-
led.
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Introduction

An ideal photochemical transformation would convert a given
reactant (A) quantitatively to a desired product (B). It is well
known that in practice, other products often appear. In this
paper we show that, in many cases, a single product cannot be
formed in principle whenever a conical intersection is
involved in the reaction. Since all photochemical reactions
begin and end on the ground-state potential surface of the
system, they necessarily involve a nonradiative crossing from
an excited state to the ground state. The crossing from the
excited state to the ground state is considered to be efficient
whenever the two surfaces touch, or nearly touch.[1, 2] As
shown by Teller,[3] the touching of two electronic states is
likely to occur, even if they belong to the same symmetry
group, by a conical intersection. It has been recognized in the
last few years that many conical intersections are possible in
most polyatomic systems; this accounts for the high rate at

which electronically excited states often decay nonradiatively.
Indeed, very rapid excited-state depletion rates (of the order
of 1013 sÿ1 or higher), have been deduced from the low
fluorescence quantum yield measured or from direct ultra-fast
measurements for many photo-reactive systems. Such high
rates, commonly observed in polyatomic molecules, are
believed to involve conical intersections. Recent advances in
computational chemistry led to some very successful efforts in
locating conical intersections, elucidating their structures, and
accounting for the experimentally observed product distribu-
tions and stereochemical trends.[4±8] The role of conical
intersections in photochemical reactions has been compared
with that of transition states in thermal reactions.[4, 9] In spite
of their apparent ubiquitous presence, and of the many
successful computational efforts, no systematic way of enu-
merating and localizing the different possible conical inter-
sections is yet available. In the present paper (restricted to
singlet-state reactions) we propose a method that may be
developed into achieve that goal. The two coordinates
defining the conical intersections are shown to lead to a pair
of products (B and C), and selection rules determining which
pairs are allowed are derived.

Several models outlining qualitatively the conditions re-
quired for the presence of a photochemical reaction have
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been offered, all of which involve (sometimes implicitly) the
nonradiative coupling of electronically excited states with the
ground state. These include the Woodward ± Hoffmann
orbital symmetry rules,[10] Oosterhoff�s valence-bond-based
model,[11] the Evans ± Dewar ± Zimmerman rules,[12, 13±15] the
two-electron two-orbital four-state model,[2, 16±18] state corre-
lation models,[18] in which the role of biradicals or biradica-
loids is emphasized, and the two diabatic states VB model of
Bernardi and Robb,[19±21] which focussed on the conditions
required to obtain a conical intersection. These models have
been very useful in advancing the understanding of photo-
chemical mechanisms, particularly for accounting for the
observed product distribution and stereoselectivity. They
have often succeeded to explain the high selectivity observed
in some photochemical reactions.[22] However, many ambi-
guities remain, hampering the interpretation of ultra-fast and
resonance Raman measurements,[23] and of quantum chemical
calculations.[4, 24] The present approach extends the ideas
incorporated in these models by considering the role of
conical intersections and by dealing explicitly with two
coordinates rather than a single one. As will be shown, the
previous models concentrate on one of the two coordinates,
and, therefore, provide a partial view of the properties of
photochemical reactions (product distribution, stereochemi-
cal selectivity).

The dichotomy between thermal and photochemical reac-
tions has been discussed in all models. The Woodward ±
Hoffmann rules discriminate between ªthermally allowedº
and ªphotochemically allowedº reactions, based on frontier
orbital symmetry. However, thermally allowed products are
known to be formed, often along with photochemically
allowed ones, in many light-induced reactions. The four-state
model presents what appears to be an ªextraordinarily puzzling
featureº:[17] a biradical intermediate can be formed both from
the electronically excited state of the reactant and from
the ground state of the product. A crossing between different
electronic states is evidently implied, and one-dimensional
correlation diagrams[1, 18, 25] have been developed to account
for the apparent contradiction. As pointed out by
Teller,[3] conical intersections (i.e., two-dimensional surface
crossings) are required in general and, as we shall see,
the one-dimensional ones may be viewed as cuts through
them.

Longuet-Higgins[26] has shown that a conical intersection
necessarily arises within a region enclosed by a loop along
which the electronic wave function changes sign (phase-
change rule). The case of a nonlinear triatomic molecule has
been analyzed by Herzberg and Longuet-Higgins,[26b] who
stated the general phase rule (ref [26b], p. 78) although a
proof was published only twelve years later.[26a, 26c] This was
later shown by Berry[27] to be a special case of a phase change
due to the partition of a quantum mechanical system into
parts (the Born ± Oppenheimer approximation in the present
case). The change in sign in the electronic wave function
evidently requires a compensating sign change in the nuclear
wave function; this is known as the geometric phase effect.[28]

This effect has been extensively discussed in relation to the
dynamics of systems near conical intersections,[5±8, 28, 29] mostly
for triatomic systems.

To our knowledge, the application of the phase-change rule
for the photochemistry of larger polyatomic molecules was
very limited. The 1975 paper seems to have had relatively
little impact on organic molecular photochemistry, although
the phase-change rule can be used to systemize the search for
conical intersection. The example chosen by Longuet-Higgins
in the paper involves not one, but three sign changes around
the loop. This situation, which is interesting in its own right,
appeared to be of little attraction to most practicing photo-
chemists. The case in which the sign changes only once, which
appears to be of equal importance, was not explicity
considered. The purpose of the present paper is to show that
the phase-change rule can be applied to predict the photo-
chemical routes of reactions involving conical intersections in
many systems of practical interest. We show that the rule,
which leads to a simple recipe for locating conical intersec-
tions, can be applied to a variety of photochemical systems. A
large number of different photochemical isomerizations and
rearrangements can be rationalized using this approach, and
the computational search for conical intersections can be
greatly helped by eliminating irrelevant structures. Moreover,
we shown that the appearance of ªthermally allowedº
products in some photochemical reactions is not a rare
occurrence, but rather a necessary outcome of the involve-
ment of conical intersections.

Results

Extension of the phase-change rule to large polyatomic
systems : Conical intersections are defined as the intersection
of two different potential-energy surfaces when plotted along
two coordinates. It has been shown that while intersections of
potential surfaces belonging to two electronic states of the
same symmetry are rare in the case of diatomic molecules,
they are quite common in polyatomic molecules.[3±8, 26±28] An
alternative statement of Longuet-Higgins� phase-change rule
is that whenever an electronic wave function changes phase
upon a complete loop along a trajectory on the plane defined
by these two coordinates, a conical intersection must be
present inside that loop. We propose a simple, chemically
oriented, method for determining the required two coordi-
nates.

We limit the discussion to the experimentally important
cases in which the lower surface is the ground state one. On
this surface, all structures exchangeable by a thermal reaction
can be viewed as being adiabatically connected by the same
wave function. In the immediate neighborhood (but not at the
exact location) of a conical intersection, the Born ± Oppen-
heimer approximation holds, and the separation of nuclear
and electronic wave functions is valid. We shall therefore
assume that the electronic wave function is well defined and
continuous throughout the region of interest, and also that its
phase is continuous. The principle of orbital phase continuity
in chemical reactions, discussed by Goddard,[30] is closely
related to this work, which focuses on the phase of the total
electronic wave function.

We need to construct a loop on the ground-state surface,
such that the phase changes of the total electronic wave
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function between different points along the loop will be
known. The smallest possible loop on a given surface traverses
three points, forming a triangle. For the problem at hand, a
natural choice for two of them is the reactant and desired
product. However, the phase-change rule requires an addi-
tional, third structure in order to locate a conical intersection.
This structure must be chosen in such a way, that the total
electronic wave function will undergo a phase change upon
traversing the complete loop. The fact that these structures
are lying on the ground-state surface makes it easy to choose
appropriate points, as it is known that for thermally allowed
reactions the transition state is phase-preserving, while for
thermally forbidden ones it is phase-inverting. A well-known
example for the latter are antiaromatic transition states (see
section on anchors and transition states below).

A graphic representation is given in Figure 1. Suppose a
phase-inverting route is found from A to B, as shown by the
line marked by I in Figure 1a. One can also find a route
leading from A to B via C (namely, traversing the trajectory

Figure 1. A schematic representation of the ground-state part of a conical
intersection involved in the photochemical transformation of A to B. The
condition for a conical intersection to lie within a loop is that the total
electronic wave function will undergo phase inversion upon being trans-
ported around the complete loop. a) Here the transition state between A
and B is assumed to be phase-inverting (I). A third structure, C, is required
to complete the loop so that a conical intersection will be located inside it.
The transition states between A and C, and between B and C, must both be
either phase-preserving (P) or phase-inverting. b) Here the transition state
between A and B is assumed to be phase-preserving. If the transition states
between A and C, and between B and C, are both either phase-preserving
or phase-invertingÐno conical intersection inside the loop is possible.
c) Here the transition state between A and B is assumed to be phase-
preserving again. In order to have a conical intersection inside the ABC
loop, of the two other transition states one must be phase-inverting and the
other phase-preserving.

A!C!B). By the phase-change rule, this route must be
phase-preserving for a conical intersection to be found inside
the loop. This is possible only if the A!C and C!B
transformations are both phase-preserving (P) or both phase-
inverting (I).

If the route from A to B is phase-preserving (Figure 1b),
and the A!C!B trajectory is phase-preservingÐno conical
intersection can be found inside the loop. This provides a
simple selection rule for discarding improper routes. The
situation is changed if the A!C!B route is phase-inverting,
as shown in Figure 1c. In the following, we use the term
anchors for the three molecular structures that define the
loop. Clearly, the presence of a conical intersection inside a
given loop depends on the nature of the anchors, but the
nature of the transition states connecting them is also
important. In particular, two given anchors may be connected

by both a phase-preserving and a phase-inverting loop. (An
example is the conrotatory and disrotatory closure of
butadiene to cyclobutene). These two routes cannot be
incorporated in the same loop. Figure 1 shows that a phase-
inverting arm is essential for the existence of a conical
intersection inside the loop. Each of the three anchors is
visited once in a given loop. As a corollary, the phase must
change either once (i.e., between two anchors only) or thrice
(i.e., between each pair of anchors). If the change occurs twice
(i.e., between two pairs of points) or not at all, no conical
intersection will be found.

The conical intersection coordinates : With the aid of the three
anchors, we can define the two coordinates forming the
conical intersection. Let the position vectors of the three
molecular structures A, B, and C, be rA, rB, and rC,
respectively, (each of which is determined by the coordinates
of the atoms forming the molecules). The wave functions of
these structures are denoted as � jAi, � jBi and � jCi, in
which the plus and minus signs indicate a positive or negative
phase, respectively, of the total electronic wave function. The
adiabatic transformation of one structure to another can take
place either with or without a phase change. As an example,
let the phase change between B and C, and remain put
between A and B and between A and C (Scheme 1). By its

Scheme 1. A schematic representation of a closed loop trajectory in which
a single phase change takes place. The total electronic wave function has a
positive phase (shown dotted) at the beginning of the trajectory (jAi), at
the transition state jA�Ci and at jCi. It undergoes a phase inversion at
jCÿBi, and has a negative phase (shown hashed) at jBi and jB�Ai,
reaching jAiwith a negative phase. The coordinates QI and QO are defined
in Equations (3) and (4): QI connects A with C near jCÿBi (both with
positive phase) and QO connects C (positive phase) with B (negative
phase).

assumed continuity, the wave function jB,Ci anywhere
between B and C may be written as the out-of-phase
combination [Eq. (1)], that is, it is parametrically dependent

jB,Ci�b(R) jB(R)iÿ c(R) jC(R)i (1)

jA,Bi� a(R) jA(R)i� b'(R) jB(R)i (2a)

jA,Ci� a(R) jA(R)i� c'(R) jC(R)i (2b)

QI� 2 rAÿ rBÿ rC (3)

QO� rBÿ rC (4)
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on the nuclear coordinates R� {rA, rB, rC}. This form ensures
the phase change. The structure at which the node is located
will be denoted by BÿC, and the associated wave function is
jBÿCi. In a similar fashion, the wave function jA,Bi any-
where between A and B, may be written as the in-phase
combinations in Equations (2a) and (2b). For this system, a
convenient choice of two coordinates for describing motion
on this surface is as follows. The first is the phase-preserving
coordinate QI (for in-phase), connecting A with BÿC, is
defined by Equation (3), and the other is QO (for out-of-
phase), the coordinate connecting B with C, which is a phase-
inverting mode [Eq. (4)].

Anchors and transition states in the loops

Properties of anchors : In view of their central role in the
model, the nature of the anchors needs to be clarified. A
conical intersection is defined by two independent coordi-
nates; These are often chosen, for a given molecule, from
among the normal modes, or some simple combination of
them. Since our prime interest is in chemical transformations,
a more natural choice would be the reaction coordinate
connecting the reactant and the product of interest. Although
the mathematical expression for such a coordinate in terms of,
say, the coordinates of the individual atoms may be complex,
such a coordinate necessarily exists for any pair of molecules
connected by an elementary reaction. We add the require-
ment that both will lie on the ground-state surface. The
reaction coordinate is defined in the usual manner used in
transition-state theory.[31] This determines two anchors. The
third anchor is also chosen from among local minima on the
ground-state potential, provided an elementary reaction
connects it to the other two. The only restriction we impose
initially is that the anchor will have a well-defined multiplicity,
and for now we restrict the discussion to singlet states. In all
cases, the number of electrons changing their spin-coupling
scheme in a chemical reaction is limited, and therefore so is
the number of spin-pairing possibilities. Each spin-paired
structure that lies at a local minimum can serve a an anchor.
The transition states arise from a resonance-stabilized combi-
nation of the initial and final structures, as suggested by
transition state theory.

Some comments are in order:
1) The wave functions of the different spin-paired systems are

not necessarily independent. A simple example is the H4

system: there are three spin pairing possibilitiesÐH1H2�
H3H4, H1H3�H2H4, and H1H4�H2H3. Writing out the
VB wave function shows that third may be expressed as a
linear combination of the first two. Nevertheless, this is
obviously a separate chemical entity, that can be clearly
distinguished from the other two. (This is readily verified by
considering, a hypothetical system containing four isotopic
H atoms (H, D, T and U). The anchors will be: HD�TU,
HT�DU, and HU�DT).

2) While in thermal reactions phase-preserving reaction
coordinates are usually dominant, both these and the
phase-inverting ones must be considered for conical
intersections. In fact, at least one phase-inverting reaction
coordinate must be included. The other two must be both

phase-preserving or phase-inverting. This will lead, in
general, to two distinct conical intersections: For instance,
in a pericyclic reaction, two different anchor pairs must be
assigned for the suprafacial and antarafacial reaction
modes.

3) Since we are currently concerned with singlet states only,
in terms of spin pairing, a biradical is equivalent to the
same molecule in which a bond is formed between the
atoms carrying the two electrons. Thus, structure Ia is
equivalent to structure Ib.

4) Conformational isomers have the same spin-pairing struc-
ture. Thus, a single anchor is assigned to all of them. Since
in general all may be formed in the reaction (unless spatial
restrictions apply), the proper anchor in this case is the
transition state connecting them.

One can, in principle, enumerate all possible structures that
may serve as anchors. After doing that, the phase-change rule
is used to eliminate the ones that do not lead to a phase
change of the total electronic wave function upon a complete
loop containing the initial reactant, the product, and the third
structure. All remaining structures are legitimate anchors, and
may appear as secondary products in a photochemical
reaction involving the anchor lying inside the loop.

Phase changes in the course of chemical reactions : In any
elementary reaction, the transition state may be constructed
as a combination of the wave functions of the reactant and
product.[32] There are always two possible combinations: an
in-phase one and an out-of-phase one, the latter involving
necessarily a phase change. These two combinations lie on two
different potential surfaces. In many ground-state reactions
the transition state preserves the phaseÐthese are usually the
thermally allowed reactions. However, it has been shown that
for some reactions the phase must change on the ground-state
potential. These reactions are of particular interest in photo-
chemistry, since by the phase-change rule they may be part of
a loop that surrounds a conical intersection. Three well known
examples are:
1) As shown by Goddard and co-workers,[30, 33] the reaction

H2�H!H�H2 involves a phase change. In a similar way,
the allyl radical can be expressed as a resonance hybrid of
two VB structures.[33] They can be combined into a
stabilized form, which is the out-of-phase combination,
and an in-phase antiresonance form, which is destabilized
and forms an electronically excited state[33±36] (see
Scheme 2). This three-electron system is analogous to the
H3 system, or, as far as phase relations are concerned, to
any system in which the transition state involves three
electrons.

2) Symmetric antiaromatic structures, that is, cyclic Hückel
hydrocarbons with an even number of electron pairs, are
ground-state transition states between more distorted
structures. They are phase-inverting, being formed by an
out-of-phase combination of two VB structures as shown
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Scheme 2. A scheme showing the construction of the in-phase and out-of-
phase combinations of the two canonical allyl radical structures. The latter
is of 2A2 symmetry and is the ground state.

specifically for cyclobutadiene,[37, 38] and planar symmetric
cyclooctatetraene,[39] and generally in ref. [40]. In a similar
way, Möbius cyclic hydrocarbons with an odd number of
electron pairs are phase-inverting.

3) The transition state in the cis ± trans isomerization of
olefins is a perpendicular ethylene structure. As shown by
Mulder,[41] this is a four-electron system, in which the out-
of-phase combination is the ground state, completely
analogous to cyclobutadiene. Therefore, any cis ± trans
isomerization transition state is phase-inverting.

The construction of the potential surface along the reaction
coordinate by considering the resonance stabilized hybrids is
in the spirit of the VB avoided-crossing model of Shaik
et al.[42] The fact that this model points out explicitly when an
adiabatic motion on the ground-state surface requires an out-
of-phase combination, makes it useful in choosing anchors.

Single phase-change loops : The single phase-change case,
shown in Scheme 1, was not discussed by Longuet-Higgins[26a]

(this situation is impossible for the three atom case, as long as
only s electrons are involved). It turns out that in larger
molecular systems, this case is quite common. The electronic
properties of such systems must be different from those of the
three phase-change case. In the latter, all the transition states
from one structure to another necessarily involve the same
number of participating electrons. However, if motion along
one reaction coordinate leads to a phase change, and motion
along another coordinate does not, a different electronic
structure is called for. For instance, in a pericyclic reaction, a
phase-preserving transition cannot be realized with an even
parity Hückel system (4n electrons, or an even number of
electron pairs[40]); an odd parity system (4n�2 electrons, or an
odd number of electron pairs) is required. That means that in
these systems, if the phase-inverting A!B reaction path
involves, say, q electron pairs, one pair must be either added or
ªfrozenº in the B!C and the C!A paths for a single phase
change to take place.

An example is the cyclooctatetraene (COT)!semi-
bullvalene (SB) photo-rearrangement[43] (Scheme 3). Here
the three anchors are two KekuleÂ structures of planar COT,
and one SB structure. A change of phase occurs on the
transition between the two COT KekuleÂ structures through an
out-of-phase combination of two even parity (8 electrons)
structures; this is an even parity Hückel system. The transition
from either one to semibullvalene is phase-preserving, since

Scheme 3. The COT/semibullvalene rearrangement: A and B are two D4h

planar bond-alternating structures of cyclooctatetraene and C is a semi-
bullvalene molecule. The coordinates QO and QI are defined analogously to
those in Scheme 1. The transition between the two cyclooctatetraene
structures is via an antiaromatic structure and, therefore, phase-inverting.
The transition from either of them to the semibullvalene structures is
phase-preserving. The positive-phase part (jAi! jAÿBi) of the loop is
shown as a solid line, and the negative phase part (jAÿBi via ÿ jBi and
ÿ jCi to ÿ jAi) as a dotted line. A conical intersection must therefore be
found within the triangle formed by the three structures.

only six electrons are involved in the transition state (an odd-
parity Hückel system)Ðone pair is ªfrozenº in this reaction.

A more familiar example of pericyclic reactions is the group
of photochemical sigmatropic rearrangements, which are very
common in olefin photochemistry.[44, 45] We illustrate this
group of reactions by discussing the rearrangement of but-1-
ene (I), which has been studied extensively both experimen-
tally[46] and theoretically,[47] keeping in mind that the results
are of general nature. Orbital-symmetry rules[10] predict that
the major photochemical pathway be a [1,3] suprafacial
sigmatropic shift that preserves the molecular stereochemis-
try. It is found experimentally that a [1,3] shift does indeed
take place, but in addition, a cyclopropane derivative is
obtained (presumably due to a [1,2] shift[46]), and that the [1,3]
shift reaction is indeed stereospecificÐthe methyl group
migrates by a supra path, with retention of the configuration.
No evidence for an antara path products was reported.

The formation of the cyclopropane product, though not
readily explained by the orbital-symmetry rules, is expected
based on the present model, along with the [1,3] shift reaction,
if a single phase change is assumed. Scheme 4 shows the
model used: the reactant and the [1,3] product are two of the
anchors (A and B, respectively), and the third (C) is a singlet
biradical, which can easily close to give the cyclopropane
derivative (along a different coordinate). Scheme 4, showing
the relevant structures and pathways, has the same topology
as Scheme 1. The supra-type transition between A and B
proceeds via a four-electron antiaromatic transition state
(TS13), which is an out-of-phase combination of the two bond-
alternating structures of the reactant and product.[40, 37] This
phase-inverting route is in agreement with the Woodward ±
Hoffmann and the Evans ± Dewar ± Zimmerman rules. The
transition to the biradical C from either A or B is a phase-
preserving process, since two of the electrons do not
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Scheme 4. The photochemical sigmatropic shift reaction of but-1-ene.
a) The 1,3- and 1,2-shift products and their assumed transition states. The
wave function representing TS13 is the out-of-phase combination of the two
VB structures shown. TS12 is represented by a single VB structure. b) The
three structures used to locate the conical intersection. A and B are two
but-1-ene isomers, the transition state between them (denoted as jAÿBi) is
the phase-inverting structure TS13. Structure C is a singlet biradical, in
which the two electrons are localized. The transition states between it and
either A or B are the phase-preserving structures jA�Ci and jB�Ci,
provided the methyl group maintains its configuration (phase inversion
would result if the configuration were inverted, as can be seen if the group
is chiral). A complete loop starting at jAi therefore leads to ÿ jAi. The
solid and dotted lines are the positive and negative parts of the loop,
respectively. The coordinates QO and QI are defined analogously to those in
Scheme 1. [C is calculated to be a local minimum, but under usual
experimental conditions will close to the shown cyclopropane derivative,
along a third coordinate (dashed arrow)].

participate. Thus, a conical intersection is necessarily found
somewhere inside the loop shown in Scheme 4. On the other
hand, the antara-type process requires that A will transform to
B through the in-phase combination of the reactant and
product.[11, 40] In this case the phase would be preserved upon a
complete loop, and no conical intersection is possible for this
case. The only way to equalize the energies of the ground and
excited states is along a trajectory that increases the separa-
tion between atoms in the molecule. Indeed, the two are
computed to meet only at infinite interatomic distances, that
is, upon dissociation.[47]

As stated in the previous section, a conical intersection may
be expected for photochemical reactions involving cis ± trans

isomerization around a double bond. The two isomers are a
natural choice for two of the anchors, the third structure will
determine whether a single or triple phase change will occur.
For the parent ethylene molecule, an example of a phase-
preserving structure is the CH3CH carbene formed by the
transfer of one hydrogen atom from one of the carbons to the
other. In this case, the cis ± trans isomerization of ethylene and
the H atom transfer will occur from the same conical
intersection (funnel) as previously suggested.[1] Another
possibility is pyramidalization (ref. [1], p. 363),[48] which leads
to a triple phase inversion. Such a conical intersection cannot
lead to H atom transfer. The existence of these conical
intersections explains the rapid cis ± trans isomerization of
small olefins upon direct photolysis, as well as the appearance
of other reaction products. Analysis of the photochemistry of
larger polyenes is a bit more complex owing to the existence
of several contributing VB structures, and is discussed else-
where.[60]

The photochemical valence isomerization of benzene to
form benzvalene (ref. [25], p. 357) is an example in which allyl
radical structures play a central role. The system is shown in
Scheme 5. In order to use the topology of the previous

Scheme 5. The valence isomerization of benzene to benzvalene. On the
ground-state potential surface, benzene is connected through phase-
preserving transitions to two isomers of benzvalene, A and B, which are
connected among themselves via a biradical structure AÿB that contains an
allyl-type transition state. This structure is an out-of-phase combination of
two resonance structures (see inset), making the A!B transition a phase-
inverting one. The solid and dotted lines are the positive and negative parts
of the loop, respectively. The coordinates QO and QI are defined
analogously to those in Scheme 1.

examples, we show the two benzvalene isomers as anchors A
and B, and benzene as the third. The benzvalene!benzene
transformation is phase-preserving. Since the two benzvalene
structures are connected via the shown allylic prefulvene
structure, which involves a phase change, the phase-change
rule predicts the existence of a conical intersection near the
region enclosed by these anchors. In a photochemical experi-
ment, irradiation of benzene leads to S1, which connects to the
ground-state surface through the conical intersection. The
much more stable benzene is expected to be recovered
preferentially, but the prefulvene structure which transforms
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to benzvalene is also formed. Another possible route from the
prefulvene, along a different coordinate, will lead to fulvene
after hydrogen-atom transfer from one of the carbon atoms to
another. This scenario was obtained computationally by
Palmer et al.[49]

Loops involving three phase changes : The H�H2 problem,
discussed by Herzberg and Longuet-Higgins[26b] is an example
of this case. There are three equivalent stable structures in this
system as shown in Figure 2a. They are connected via linear

Figure 2. The symmetric three atom system, represented by the H2�
H!H�H2 reaction. a) The three equivalent structures A�H1�H2H3,
B�H2�H1H3 and C�H3�H1H2, connected via linear HHH phase-
changing structures. The symmetric triangular structure in the center is that
of the conical intersection. b) The definition of the two coordinates that
determine the conical intersection: QI(� 2 rAÿ (rB� rC)) is the in-phase
(phase-preserving) coordinate and QO(� rAÿ rB) is the out-of-phase
(phase-inverting) one. c) A schematic representation of the phase changes
taking place on transporting the system from an initial structure A (with a
positive phase) through the loop shown in a). Dotted regions represent a
positive phase, negative phase ones are hashed.

transition-state structures, each of which is phase-inverting.
The three anchors are assigned as A�H1�H2H3, B�H2�
H1H3, and C�H3�H1H2. As seen from Figure 2b, a com-
plete loop starting at, for example, jAi with a positive phase,
changes phase and reaches structure A with a negative phase
(cf. Figure 1 in ref. [26b]). The coordinates shown, chosen so
as to simplify the location of the conical intersection, were
defined in Equations (3) and (4). They are of course
equivalent to those used in previous treatments of this system
(see, for example, ref. [32]), and can be constructed from them
by linear combinations. A schematic illustration of the phase
changes of the total electronic wave function around the loop
is shown in Figure 2c. The A, B, and C anchors are located at
the vertices of the triangle shown. The phase is taken as
positive above the plane of the triangle (dotted area), and as

negative below it (dashed area). By symmetry, in this case the
conical intersection is located at the intersection point of the
heights of the isosceles triangle defined by the loci of the
anchors A, B, and C, and has a triangular structure (Fig-
ure 2a).

If we relax the requirement that the three atoms be
identical, we still have the same topological structure with
three phase changes, except that the location of the conical
intersection is now not at the geometrical center of the
triangle.[26b]

The threefold phase change case is not limited to atomic
systems only. A molecular example is the isomerization of the
antiaromatic molecule acepentalene (Scheme 6). In this
molecule (whose isolation is still to be realized), the bond

Scheme 6. A schematic representation of the of the acepentalene isomer-
ization. A, B, and C are the three bond-alternating isomers. A closed loop
that changes phase three times is shown, leading from jAi to ÿ jAi. The
structures AÿB, CÿB and CÿA are antiaromatic transition states. The
conical intersection lies in the center of the triangle formed by rA, rB, and
rC. The coordinates QI and QO are defined in Equations (3) and (4).

lengths alternate, as shown by quantum chemical calcula-
tions.[50] The anchors are chosen to be the three possible
isomers shown in Scheme 6, the transition from one to the
other being via the antiaromatic structures AÿB, BÿC, and
CÿA, in which the pentalene part is symmetric, (i.e., has equal
bond lengths). It has been shown that the symmetric
pentalene ground-state structure is formed by the out-of-
phase combination of the two KekuleÂ structures.[40] Thus, the
electronic wave function undergoes a phase change. A
calculation shows that the conical intersection has a C3v

structure, which lies at the geometrical center of the three
isomers.[51] Three phase-change loops are encountered in
many other systems, for instance in the photochemistry of
polyenes, as discussed in a recent publication.[60]
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The role of conical intersections in photochemistry is not
limited to organic systems only. The cis ± trans isomerization
of a planar square of a d8 transition metal complex (for
instance of Pt2�) is known to be photochemically allowed and
thermally forbidden.[52] It was found experimentally[53] to be
an intramolecular process, namely, to proceed without any
bond-breaking step. Calculations show that the ground state
and the excited state touch along the reaction coordinate (see
Figure 12 in ref. [54]). Although conical intersections were
not mentioned in these papers, the present model appears to
apply to these systems.

Consider a metal M bound to four ligands, L1 ± L4, lying at
the corners of a square around the metal. Three anchors can
be written for this system, as shown in Scheme 7. They consist
of all three possible geometrical permutations of pairs of

Scheme 7. A proposed scheme for the intramolecular ligand-exchange
reaction of a planar complex of a metal ion M with four different ligands.
The same system applies to the cis ± trans photo-isomerization of an MA2B2

complex. The transition states between the three possible anchors shown
are phase-inverting, making this a three phase-change system. Irradiation
of any one of the anchors will lead to an excited state, and the decay back to
the ground state through the conical intersection will result in intra-
molecular isomerization.

ligands lying across the metal ion. Transition states between
each pair are phase-inverting (thermally forbidden, ref. [52]).
The conical intersection in this case is a tetrahedron, shown
schematically in the center of the scheme. In fact, there are
two different (though energetically equivalent) conical inter-
sectionsÐthe tetrahedral structure can exist in two enantio-
meric forms. A possible way to distinguish between them is by
the use of a chiral molecule as one of the ligands, so that the
two conical intersections become diastereomers rather than
enantiomers.

These conical intersections allow the photo-isomerization
to proceed without breaking a single bond. In the ground
state, a bond-breaking ± bond-recombination mechanism is
often energetically more favorable. An experimental example
for such a system is provided by the photo-isomerization of
[Pt(gly)2Cl2].[53]

Discussion

The present work stresses the central role of the phase of the
total electronic wave function in determining the location of
conical intersection. Following the theorem of Longuet-
Higgins, the importance of three anchor structures on the
ground-state potential surface as the key ones that define the
conical intersection region. These structures, in turn, are used
to define the two coordinates, one phase-preserving and one
phase-inverting as the ones leading to the conical intersection.
A natural choice of two of the anchor structures is the reactant
and the product. However, no discussion of a conical
intersection, and hence a photochemical reaction, is complete
without considering a third structure. The third structure can
be another possible product, or any other stationary point on
the ground-state surface. It can be found systematically,
though tediously, by considering all possible chemical struc-
tures. An intuitive guess is a faster way, and the phase-change
test can be readily used to discard structures not leading to a
conical intersection. In any case, a photochemical reaction
involving conical intersections invariably leads to at least two
reaction products. The second product can be an isomer that is
not readily distinguishable from the first product unless
special tagging methods, such as isotopic substitution, are
used.

Attention was focussed on the ground-state part of the
conical intersection. The important work of Bernardi, Robb,
and their associates[4, 19±21, 47] has revealed that when several
conical intersections are found, the trajectory on the upper
state will determine the outcome of the reactionÐthe system
will develop along the steepest descent. The present model
complements their work by showing that a systematic search
for possible conical intersections in the region of chemical
interest is possible. This should be the first step in the analysis.
Regardless of the nature of the upper state, the presence or
absence of a conical intersection can be determined by the
properties of the lower part only. This can be done simply by
checking whether the phase of the total electronic wave
function inverts or not upon being transported around the
assumed conical intersection in a complete loop.

The required phase change between at least two anchors in
the loop implies the consideration of ground-state transition
states that are often not encountered in thermal (ground
state) reactions. These must be phase-inverting ones such as
resonance stabilized out-of-phase combinations of two VB
structures. Examples are any allylic or antiaromatic transition
states,[33±35] perpendicular ethylenes,[41] and Möbius type
aromatic transition states.

An important new feature is the introduction of single
phase-change loops. In a three phase-change systems, both
products are the standard photochemically allowed ones. In
contrast, in a single phase change system, one of the products is
necessarily a ground state allowed product. Therefore, the
sharp dichotomy occasionally made between photochemically
allowed and thermally allowed reactions holds strictly only for
a restricted class of light-induced reactions. The single phase-
change systems, which appear to be quite common in organic
chemistry, always lead also to a thermally allowed product.
The branching ratio between the two possible products will be
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determined by the details of the potential surfacesÐone of
them may have a small yield as a result of kinetic or dynamic
constraints. An important result of the model is that certain
product pairs are predicted to be simultaneously formed. A
more detailed discussion of the expected ones in polyene
photochemistry was recently published.[60]

As emphasized in the Introduction, this treatment applies
to photochemical processes involving a conical intersection,
as is expected to be the case when no minimum is found on the
excited-state potential. If a local minimum is found, as
revealed for instance by fluorescence, the transition from
the excited state to the ground state may be slower, and
involve different selection rules.

Comparison with other models : Several workers pointed out
the importance of the sign change of molecular orbitals
involved in pericyclic photochemical reactions, and correctly
analyzed the equivalence of Möbius aromatic structures
and Hückel antiaromatic ones in cyclic transition
states.[11, 13, 14, 22, 55] Oosterhoff and co-workers used VB lan-
guage, while Heilbronner and Zimmerman have formulated
the difference between Hückel and Möbius structures by
considering molecular orbitals: Hückel structures have zero
or an even number of sign inversions, whereas Möbius ones
have an odd number. The present model is an extension of
these views; conical intersections were not specifically
mentioned, and the phase-change rule, which was clearly
stated by Longuet-Higgins a bit later, was not presented as the
physical basis for the central role of these structures in
photochemical reactions. The calculations presented by Lugt
and Oosterhoff[11b] show the presence of a structure with an
energy maximum in the ground-state potential and a mini-
mum in the excited-state one (erroneously labeled as having
the same symmetry). This situation can now be understood as
a cut in the double cone that avoids the apex (Figure 3). Had
they considered the other coordinate, the real conical
intersection would probably have been found by them.
Oosterhoff�s treatment may therefore be taken as a special
case of the more general one discussed here. It is noted that
the closely related case of the noncyclic allylic structures,
which are equivalent to the above-mentioned cyclic ones
according to the phase-change rule, appears to have been
overlooked in their work.

Phase changes are central for the derivation the Dewar ±
Evans ± Zimmerman rules. They were used to predict the
stereochemical characteristics of thermal and photochemical
sigmatropic [i,j] shifts. A succinct summary is given in
Table 7.4 of ref. [1]. They are now seen to be a special case
of a more general scenario.

Zimmerman developed a model[22] that regards photo-
chemical reactions as a succession of elementary steps in
which intermediates such as biradicals are present, analogous
to thermal reaction mechanisms. In the present approach, the
role of an intermediate is replaced by that of a conical
intersection, which in principle cannot be isolated, and can
lead to two (or more) final products. It is an experimental fact,
that the assumed intermediates were notoriously difficult to
observe (see e.g., the discussion of the Zimmerman di-p-
methane rearrangement in ref. [25], p. 246). Likewise, such inter-

Figure 3. A schematic representation of the potential surface near a
conical intersection, plotted as a function of the two coordinates QI and QO

[Eqs. (3) and (4)]. In the ground state, B and C are connected by a phase-
inverting transition state (ÿB�C), while A is connected to both by phase-
preserving transition statesÐthis is a single-phase-change system. The
relation to the Oosterhoff model is shown by the cut across the two cones
that does not contain the apex. It forms a one-dimensional energy-level
diagram, in which a given structure will have a maximum in the ground
state and a minimum in the excited state. Compare with Figure 1 in
ref. [11a]. A Salem correlation diagram is obtained by making the cut pass
through the apex, and contain two of the anchors.

mediates were not found in an extensive ab initio calcula-
tion;[56] instead, a conical intersection was revealed.

The correlation diagrams suggested by Salem,[18, 57] may also
be viewed as a two-dimensional cut through the double cone
(Figure 3), the intersection point being the apex. In these
calculations, the structures of the excited states are explicitly
considered. Being one-dimensional plots, they do not carry
the complete information provided by the conical intersec-
tion. Nonetheless, by a proper choice of the symmetry
element, using chemical intuition, this approach quite often
leads to the correct result. The complete two-dimensional
treatment provides a more systematic way for choosing the
necessary coordinates.

The Woodward ± Hoffmann model makes the simplification
of considering frontier orbitals only. It is attractively simple,
and is indeed very helpful in analyzing thermal reactions.
Phase-inverting reaction paths are usually avoided in the
ground state in thermal reactions, since lower barriers are
provided by alternative phase-preserving ones. However,
when coming down a conical intersection, the phase-inverting
process may dominate. We note that the strict dichotomy
predicted by the Woodward ± Hoffmann rules is actually
expected within the phase-change rule model, if the phase is
inverted upon transition between any pair of anchors. This
condition, however, appears to hold only for a limited group
of reactions. In cases in which the phase changes only once,
both the thermally allowed and the photochemically allowed
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products are expected. Their relative yields are determined by
dynamic constraints.

The renewed interest in the role of conical intersections in
organic photochemistry is owed largely to the extensive work
of Olivucci, Bernardi, Robb, and their co-workers[4, 19±21, 24, 47]

over the last ten years or so. They showed that these structures
are involved in many pericyclic reactions and in nonradiative
transitions,[58] and that the experimentally observed stereo-
chemistry of these reactions is predicted by the calculations.
In their work, a simple 2� 2 VB-based model that includes
two molecular structures, the reactant and the product, was
introduced. This basically sound model is in the spirit of the
Oosterhoff treatment. The condition for a conical intersection
was expressed mathematically in terms of the exchange
integrals of these structures; a requirement is that the energy
difference between the upper and lower states is zero. This is a
necessary condition, but is not sufficient, and so cannot by
itself determine the location of a conical intersection. Since
only one coordinate connects two structures, no a priory
guide-lines are given for the location of a conical intersection
that requires two coordinates. An example that was noted
above is the coordinate found leading to the dissociation of
but-1-ene.[47] Our work complements these studies, and should
help to systemize the search for these structures. The use of
the third anchor structure suggested in this work, and the
check for phase inversion, provide the extra necessary condi-
tion missing in the 2� 2 model. It is hoped that the ªchemi-
cally inspiredº coordinates proposed in the model will help to
guide the computational search for all conical intersections.

The two electron (3� 3 full configuration interaction)
model[1, 2, 16] focuses attention on four states formed by
different occupation of two relevant atomic orbitals. The
breaking of the sigma bond in H2 upon bond stretching and of
the p bond in ethylene upon twisting the angle between the
two CH2 moieties are treated in this model on a similar basis.
According to the present model, they are fundamentally
different: the HÿH stretching coordinate is symmetric, and
cannot lead to phase change. The complete treatment of
twisted ethylene, in contrast, is that of a four electron
system,[33, 37, 41] and a phase-inverting coordinate connects the
two planar structures via the perpendicular one. The latter can
be considered as a delocalized biradical, in which the biradical
nature cannot be associated with a given atom pair. In
contrast, bond-stretching transition states, lead to localized
biradicals and are not necessarily involved in a conical
intersection.

Nonetheless, the phase-change rule model may be consid-
ered as an extension of this model if a third structure is chosen
such that the transition states leading to it will have a different
parity (of participating electron pairs), for example, by
ªfreezingº one pair. This can be done, for instance, by the
formation of a biradical in which only two electrons (rather
than four) are not fixed in sigma bonds, as in the but-1-ene
rearrangement. Another possibility is the formation of an ion
pair by grouping two electrons together on a single atom. This
pathway is a key feature in the 3� 3 CI description of the two
electron two orbital model.[2, 59]

In ref. [4] it was noted that previous models were limited by
the fact that the reaction coordinates are assumed. A system-

atic search for the proper ones was called for. The present
approach provides a means for guiding systematically the
computational search of minimum-energy paths and possible
reaction routes towards the relevant parts of the potential
energy surface.

Conclusion

The course of many photochemical reactions is determined by
conical intersections. The phase-change rule can be used to
locate conical intersections and to predict the product
distribution and stereochemical properties of many poly-
atomic systems. It is shown that three molecular structures are
essential to determine the location of a conical intersection,
and that if a single phase change takes place, the electronic
excitation will result in general in two products, of which one
is photochemically allowed, the other thermally allowed. On
the other hand, the dichotomy between thermally allowed and
photochemically allowed reactions is expected to hold for
systems in which the conical intersection is due to a three
phase-change loop.

A recipe proposed for identifying the regions in which
conical intersections are to be found (in general more than
one conical intersection can be found for any given system)
requires consideration of ground state surface properties only.
It consists of the following two steps:
1) Choose three ground state structures (anchors), two of

which are the reactant and the product. Consider the
adiabatic trajectory connecting the reactant with the
desired product. If it involves a phase change of the total
electronic wave function, the third anchor must be such
that its conversion to both of them either preserves or
inverts the phase. If the reactant!product trajectory in
the ground state preserves the phase, the only way to
obtain a conical intersection is by finding a third anchor
connected to one of the two by a phase-preserving path,
and to other by a phase-inverting one.

2) Determine the two coordinates defined by the three
anchors as outlined in Equations (3) and (4). The conical
intersection is to be found along these two coordinates, in
the region bordered by the three anchors.
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